SOME EXAMPLES CONCERNING STRICTLY
CONVEX NORMS ON C(K) SPACES

BY
F. K. DASHIELL! AND J. LINDENSTRAUSS

ABSTRACT

Some examples of C(K) spaces which admit (respectively, do not admit) an
equivalent strictly convex norm are given. These examples consist of ideals in
I (I) (the bounded, real-valued functions on the unit interval I having a count-
able support) which contain cy(/).

We are concerned in this paper with examples related to the general problem
of describing those Banach spaces which admit an equivalent, strictly convex
norm. (Recall that a norm is called strictly convex if the surface of its unit ball
contains no line segment.) This is a problem in the study of non-separable Banach
spaces since, as is well known, every separable Banach space can be strictly
convexified (see Day [1]).

Clearly, the property that a Banach space be strictly convexifiable is hereditary
(that is, passes from a space to its subspaces) and invariant under isomorphism.
In fact, strict convexifiability has a stronger permanence property. If there is a
one-to-one continuous linear operator T from a space X into a strictly convexi-
fiable space Y then X is also strictly convexifiable. Indeed, if “ H1 is the given
norm on X and ||| || is a strictly convex norm on Y then H X “2 = ” X ||1 +IT x ||
is casily seen to define an equivalent strictly convex norm on X. Thus, in studying
the question of strict convexifiability, it is natural to try to classify spaces ac-
cording to the existence or non-existence of continuous one-to-one linear maps
from one Banach space into another. Again, this classification is of interest only
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for non-separable spaces, since it is easily seen and well known that if X and Y are
infinite-dimensional and separable then there always exists a one-to-one map from
X into Y. (A simple way to see this is to use the fact that X is a subspace of C(0,1), Y
contains a normalized basic sequence {y,}, and T:C(0,1)— Y defined by
Tf = X2 27"f(t,)y,, where {t,},%, is dense in [0, 1], is a one-to-one map from
C(0,1) into Y.)

The present paper can be considered a sequel to Day’s paper [1]. In it Day gave
the first example of a non-strictly convexifiable space. He showed that if
X = I2(T), the space of all bounded functions f from an uncountable set I" to the
reals R such that the support of f, 6(f)={y: f(y) # 0}, is countable, then X has
no strictly convex norm equivalent to the sup norm. (To explain our notation, we
remark that X is clearly a subspace of /”(I'), the space of all bounded functions
from I" to R; c stands for countably supported.) On the other hand, Day proved
in his paper that co(), the subspace of I7’(I') consisting of those f such that
alf) ={r:|f (y)l = ¢} is finite for for every & > 0, does admit a strictly convex
norm equivalent to the sup norm. Subsequent to Day’s work it was shown that
a large class of Banach spaces do admit a continuous one-to-one linear map into
some co(I") and thus admit an equivalent strictly convex norm. (Such spaces
include all the weakly compactly generated spaces and their duals; see [3].) How-
ever, the published results on this subject do not answer the question whether
the existence of a one-to-one map from X into some ¢o(I') is actually a necessary
condition for X to be strictly convexifiable. (This question was explicitly raised in
[3, p- 259].) Likewise, it has been unknown whether the spaces I°(I') are the
smallest examples of non-strictly convexifiable spaces, in the sense that every
non-strictly convexifiable space X contains a one-to-one continuous linear image
of I2(I') for some uncountable I' (and thus for I of cardinality N,). In this paper
we give quite natural examples of spaces which answer both questions negatively.
In fact we demonstrate where, in the gap between co(I) and [°(]), strict con-
vexifiability ends and non-strict convexifiability begins for the case I = I = [0,1]
(which is the simplest case, modulo the continuum hypothesis).

We consider I in its natural topology, and for every subset A I and every
countable ordinal o, we denote by A® the ath derived set of A (that is,
A® = A4, A@*Dis the set of all accumulation points, or cluster points, of A®,
and for a limit ordinal a, A® = N;.,A®). For each countable ordinal a, we
define X, to be the subspace of 1°(I) consisting of all f such that ¢,(f Y@ = ¢
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for every >0 where o(f) = {tel:[f(1)] 2 ¢}. Define also ¥ = U,,, X,.
Then we have

6] o) =X X, cX, € Xpuy © YD)

Clearly, all the X, and Y are closed linear subspaces, in fact ideals, in [*(I).
The space Y has a simple intrinsic description. It consists of all functions in
I2(I) which belong to the first Baire class, that is, are pointwise limits of sequences
of continuous functions (see Proposition 1).

The main result of this note is that, from the point of view of existence of one-
to-one maps, all the spaces (1) are distinct (that is, there is no continuous one-to-one
linear map going in a direction opposite to the inclusion signs in (1)), that the X,
are all strictly convexifiable, and their union Y is not strictly convexifiable. The
non-existence of one-to-one maps is contained in Theorem 2, a somewhat stronger
result, which is a consequence of a lemma of Rosenthal [5]. The proofs of the
existence, or non-existence, of strictly convex norms are based on the ideas in
Day’s paper (see Lemmas 6 and 11 below). The unit interval I can be replaced in
these results by any uncountable compact metric space and even by more general
spaces. However, since here we are simply constructing examples to (hopefully)
illuminate the subject of strict convexifiability, we do not see any advantage to
working in a more general setting.

We recall that a nonempty set 4 <[ is said to be dense-in-itself if 4 < A,
that is, A has no isolated points. A4 is scattered if A has no dense-in-itself subset.
Equivalently, 4 is scattered if and only if A = ¢ for some countable ordinal a.
If A is scattered, then A is countable, for otherwise the condensation points in 4
would constitute a dense-in-itself subset (the kernel of 4). The following proposi-
tion is entirely classical in nature and must certainly be known,

ProPoOSITION 1. If fel®(I) then these are equivalent:

(2) fis in Baire class 1 and has countable support;
(3) feY= U, Xss
(@) foreache>0,0,f) = {t: |f(t)l > ¢} is scattered.

Proor. We invoke the two classical descriptions of Baire class 1 (see [4, Ch.
XV]): a function f on I is in Baire class 1 (i) if and only if f'(F) is a GjsetinI
whenever F is a closed set, and (ii) if and only if for any perfect set P = I, f |P has
a point of continuity. Notice that a countable G; set 4 in I is always scattered,
because a dense-in-itself subset D = A would have prefect closure D in which the
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set A N D would be first category on the one hand (being countable) and a dense
G, in D on the other hand, contradicting the Baire category theorem. This
observation, combined with (i), proves (2) = (4). Assuming (4), choose for each
n =1 a countable ordinal a, such that ¢, ,(f )*) = ¢, and set a = sup,a,. Then
feX, <Y, thus (4) = (3). Now assume (3), that is, fe X, for some a < w;. We
prove (1). By the remarks preceding Proposition 1, ,,(f) is countable for each
nz1,so0o(f) = U a,,(f)is countable. Let P be a perfect set in I. For every
n>0, 6,,(f) NP is nowhere dense in P, because if ¢ # V < g,,(f) O P, with V
open in P, then o,,(f) NV would be a dense-in-itself subset of a,(f). Thus
Uz, a1,.(f) NP is first category in P, so we can choose toe P — U2, a,,(f)-
Clearly f(¢o) = 0 and f IP is continuous at f,. This shows by (ii) that f is in Baire
class 1, and (3) = (2) is proved. This proves the proposition.

THEOREM 2. (i) There is no continuous linear T: X, — co(T") (for any set I')
such that T| co(I) is one-to-one.

(ii) If o« < B then there is no continuous linear T: Xz — X, such that TI co(D)
is one-to-one.

(iii) There is no continuous linear T: 17(I) - Y such that T[ co(I) is one-to-one.

To prove the theorem we use two Jemmas. The first is a lemma of H. P. Rosenthal,
which J. Kupka has recently proved (see [6]) by a very short argument.

LemMA 3. (Rosenthal [5, p. 16]). Suppose S is an infinite set and {u,: te S}
is a family of fnitely additive measures de ned on all subsets of S such that
sup; . s Iy,l (S) < o0. Then for each € > 0, there exists a subset S’ S such that
card S’ = card S and |,u,l (S"={th) <eforallteS"

LemMMA 4. Suppose S is an uncountable subset of I and y:S—1 is any
one-to-one function. Then

(i) for each « < w, there exists a set E = S so that E®*V = ¢ and y(E)® # ¢;
and

(ii) there exists a countable set H = S so that y(H) is dense-in-itself.

Proor. By the remarks preceding Proposition 1, choose a nonempty dense-in-
itself subset D of the uncountable set y(S). For (i) it suffices to prove (5).
(5) For every o >0 and xeD there exists a point te [ such that every open
set V containing f also contains a set E < VNS satisfying E® — {t} = ¢ and
xey(E)®,

The proof is by induction. For a = 0, take t=y~'(x), E={t}. Suppose a >0
and (5) is true for every f < a. Choose §; < B, £ --- <« so that sup,(f, + 1) = a.
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Choose xe D, and pick a sequence {x,} in D such that x, # x, if m % n and
lim x, = x. Let B,(f) denote the open ball of radius ¢ about t. For each x,, choose
by the induction hypothesis f,€l and a set E, =S such that E, < B, jn(tn)
E®"— {t} = ¢, and x,ey(E,) ") Then choose n, <n, <-- so that {t,} is
Cauchy, and let t = lim,_ ¢, . We show this is the desired tel satisfying (5)
for x.

Let V <= I be open with te V. Since E, < By, (t,) and t,, — ¢, there exists kg 2 1
so that E, <V for k>ky Define E = {Jyz4, Eo, © V NS. Since each
E¥" is at most a singleton, we have E® = ¢, n = 1,2, thus for k; =k, we
have

(a)
E® < E,(,:) U uE,(,‘Z) U ( U E,,k) < U E,.
° 1 k>ky k>ky
For any open set W< I containing t, E, < W for large k, so E® < W. Thus
E® — {t} = ¢. Finally, for each § < a, eventually §,, = § and

X, € YE, )P0 = y(E)*0 < y(E) 4

Since x,, — x, we have x e (V< Y(E)*? = y(E)®. This proves (5), and (i) is
proved.

To prove (ii), just let H = y~!(C), where C = D is some countable set dense in
D. Then H is countable and y(H) = C is dense-in-itself. This proves Lemma 4.

ProOF OF THEOREM 2. Suppose Z is a Banach space with c¢y(I) = Z = I°(I)
and T:Z - [*(I'), for some set I, is a continuous operator such that T| co(I) is
one-to-one. We denote by kg the characteristic function of the set E. By Zorn’s
lemma, choose a maximal subset I, < I which is the domain of some one-to-one
function y: I, — I satisfying Tk, (y,) # 0 for all tel,. By the maximality of I,
we must have Tk, supported in y(Iy) for all te I — I, thus for all fe co(I — 1) we
have o(Tf) < y(I,)- Since TI ¢o(1) is one-to-one, the maps f— Tf(y,), tel,, form
a total set of linear functionals over cy(I — I). Thus I, must be uncountable,
otherwise I — I, would be uncountable and cy(I — I4)* would contain a countable
total set, a contradiction. Thus there exists ¢ > 0 so that, for all ¢ in some un-
countable subset I; < I, | Tk (v) | > ¢ Fortel,,let 6y, € I°(I')* be an evaluation
at y,, and by the Hahn-Banach theorem choose g, € [*(I)* such that y, [ Z = T*dy,
and || = || T* | S | T||. Regarding the g, as finitely additive measures on
the subsets of I, we find by Rosenthal’s lemma an uncountable subset I, < I,
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such that Iu,| (I, — {1}) <4efor all tel,. If E < I, is any subset with k;eZ
then, for all teE,

| Tker)| = | T*6,.(k)| = | u(B)|
z |u({t)] - |m] E-{th
2 | Tk — ||z — {)
> ¢— 46 = de.

Thus Y(E) = {y,: te E} < 0,,(Tkp).

To prove (i), suppose X, c Z and choose E to be any one-to-one Cauchy
sequence in I,. Then kg e X, < Z and y(E) is infinite, y being one-to-one. Thus
0,{Tkg) is infinite, so Tkg ¢ co(I") and (i) is proved.

Now suppose I' = I. To prove (ii), suppose « < f and X; = Z. By Lemma 4,
choose E < I, so that E®*Y = ¢ and y(E)® # ¢. Then kpeX,,, < Z and
04 (Tke)® # ¢. Thus Tky ¢ X,, and (ii) is proved. To prove (iii), suppose
I2(I) = Z and choose, again by Lemma 4, a countable set H < I, such that y(H)
is dense-in-itself. Then kyel”(I) =Z but ¢,,(Tky) is not scattered since it
contains y(H). Thus, by Proposition 1, Tk, ¢ Y, and (iii) is proved. This proves
Theorem 2.

Our next result gives a stronger version of part (iii) of the preceding theorem.
It is similar to the classical stationarity principle for monotone transfinite
sequences of Baire class | functions (see Kuratowski [2, p. 420]). We denote by

4, the space of all bounded Baire class 1 functions on I. For xe I2(I), | x| = 1,

we let F, denote the facet of the unit ball determined by x, that is,

Fo={yel2M:|y] =1, y() = x(y) if x() # 0}.

THEOREM 5. If T is uncountable and T: I12(I') — %, is any continuous linear
operator, then there exists an x €1(I') of norm 1 such that Ty = Tx for all
yeF,.

Before proving the theorem, we need a lemma which will also be used to prove
Theorem 9. If F is a convex set in a linear space and x € F, we say that F is sym-
metric about x if whenever yeF then y’ =2x—y is also in F (hence
x =4[y + y'D. A function p: F— R is convex if, for all x,yeF and te[0,1],
plx + (1 ~y) S tp(x) + (1 = Dp(y).

LEMMA 6. Suppose Fy oF, oF; o--- is a decreasing sequence of convex
sets in a linear space, x, € F,, and each F, is symmetric about x,,. Let p: F; - R
be a bounded convex function, and let
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M, = sup{p(z): ze F,} and m, = inf{p(z): ze F,}.

If
p(xu) 2 %Mn—l + kmu—b n = 2,3"",

then p is constant on F = (2 F,.

ProoOF. The idea comes from Day [1, p. 521-522]. First choose n>1 and
g > 0. Pick y e F, so that p(y) < m, + 2¢. Since 2x, — yeF, and x, = 4 2x,— v)
+ 4y, we have p(x,) <1 M, + 1m, + ¢, and ¢ being arbitrary, we rewrite this as
m, = 2p(x,) — M,. For n > 1, we then have

M,,—m,,§M,,—2p(x,,) + Mn—<——2Mn—1_%Mn—1—%mn—l
=} [Myy —m,_,].

By induction we obtain M,—m, < (2-"*!)[M; —m,],n = 2,3,--+, so M,—m,
— 0 and p must be constant on F = (1, F,. This proves Lemma 6.

COROLLARY 7. If xelX(D), ”x“ =1, and p,, p,,--- are bounded convex
functions on F,, then there exists a fixed y € F, such that all p,, are constant on F,.

Proor. First prove it for a single p. Choose inductively a sequence x,,x,, -+

so that x; = x,
p(x,) Z3sup{p(z):zeF, _}+1inf{p(z):zeF, _}.

Clearly, the sequence {x,} is pointwise convergent on I, and if y = limx, then

X, ” =1, F,, oF,, >, and for n = 2,3, ...,

F, = N,=1F,, By Lemma 6, p is constant on F,. For a sequence p,,p,, -

choose inductively y, = x and y,€F, _,

P are constant on F, = (- F, , where y = lim y,, (pointwise).

so that p,, is constant on F, . Then all

ProOF OF THEOREM 5. For n21 and yelPT), |y] =1, let

S,y = {tel: sup Tz(t) - inf Tz() <1/n}.

z=F. zeFy
We first prove:

(i) For every closed set K < I, every n 2 1, and every x e 1°(I) with | x| = 1,
there exists a y € F, such that S, , contains a nonempty relatively open subset of K.

Fix K,n, and x. Let G, G,, --- denote a base of open sets in I, If we define the
functions &m, @, on F, by q?,,,(z) = SUP;c kng.. T2(1) and @,(2) = inf, k¢, T2(1),
zeF,, where m runs over the integers satisfying K N G,,.—aé ¢, then @, and — Pa
are bounded convex functions on F,. By Corollary 7 we choose y € F, so that, on
F,, all these functions are constant. Since Ty e #,, there exists in K a point of
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relative continuity of Ty, so there exists some G, such that K NG, # ¢ and

Tp,,,o(y) - ijo(Y) < 1/n. Since ?13,,,0 and ¢,,, are constant on F,, we have for each
beKnNG,,

sup Tz(b) — inf Tz(b) £ sup <_p,,,°(z) — inf ¢,(2)

zeF. zeF, zeF, zeFy

= Pue)) = Pme¥) <1/,

so beS, . Therefore KNG, <=8,
We next prove:

y» Which proves (i).

(ii) For each n 2 1 and x € I(T) with " X H = 1, there exists a y € F, such that
Syy =1L

To prove (ii), fix n and x. Choose G, to be the first G, contained in any set
S, . for zeF, (G,, exists by part (i) applied to the case K = I), and choose
y1 € F, such that G, =S, ,,. Now let m, be the next index past m; such that
G, is contained in some S, ., z€ F,,. Choose then y, € F, such that G,, = §,,,,.
Continuing inductively, we obtain a sequence {y,} such that y, € F, and y, ;€ F,,
and a subsequence G, G,,,--- of basic open sets with G, <S,,,. Now let
y = limy,; we show S, = I. Indeed, if G = J;-,Gn, then G =S, because
Gy © Suy, © Sy It suffices to show G = I. If not, then K = I — G # ¢, and by
(i), some S,,,, zeF,, must contain a nonempty set of the form K NG,. But
G,=(K uvg,) v(G,-K),so G,=S,,uGcS,,YS,, = S,,. Since zeF,,
for each k, G, must have been included in the subsequence G,,G,,,-*. Thus
G,, = G, contradicting K NG = ¢. This proves (ii).

The theorem now follows quickly. By (ii) choose inductively 4 sequence {y,} with
Vn+1€F, and S,, =1I,n =12, Taking x = limy,, we have Ty = Tx for
all y e F,. This proves Theorem 5.

COROLLARY 8. There is no continuous linear one-to-one map from Baire class
2 into Baire class 1.

Proor. IZ°(I) is contained in Baire class 2.

ReMARK. By Theorem 5, there exists for any T:1°(T') - #, a countable set
o(x) = I’y =T such that Tz = 0 if ze(T") is supported off I'y. Thus T| co(D)
cannot be one-to-one, and part (iii) of Theorem 2 is strengthened.

THEOREM 9. The space Y := |J, <o, X, has no strictly convex norm equivalent

to the sup norm.
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PrOOF. Suppose N is a continuous norm on Y. Choose f; € Y with I]f1 H =1,
and let P, = I. Define

Fy={feY:|f] =1, f() = f(5) if f1(t) # O}.

Suppose n>1and f,_ €Y, P,_;<I, and F,_,c F, are defined such that P,_,
is perfect. Then choose f,eF,., so that N(f,)=#}sup{N(f):feF,_i} +
}inf{N(f): fe F,_,}. Since o({f,) is countable, we can choose P, to be a perfect
subset of the uncountable Borel set P,_, — a(f,) ([2, p. 447]). Then define
Fo={feY:|f| = L, f(®) = f(t) if £,() %0, o(f - f,) = P,}. Clearly, F; oF,
>F3>+, P, oP,>Py >, and o(f,o;—f)<P,—P,ry, n =12
Obviously each F, is convex and symmetric about f,, so Lemma 6 implies that N
is constant on F = (1%, F,. It remains to show that F contains at least two
points of Y.

Clearly the sequence {f,} is pointwise convergent, so we let f = limf,. We show
fe Y by showing that all o,(f), € > 0, are scattered and apply Proposition 1. Since
o (f) =0a(f)V U:°=10':(fn+1 —f»), it suffices to show Unw=1 O(fas1 —f) is
scattered. For any subset D « U2, 6,(f,+; —f,), we let D, = D "o (fos1—1fo),
n = 1,2,---, and observe that D, co(f,+, —f,) @ P, — P,y(. If D, is the first
nonempty set D, for n 21, then D~ D,, = Upsno Pn © Upsng Po = Pugi 1> SO
D-D, <P, But D,,cP, —P, .y, s0 D,, "D — D, = ¢, which implies
that D, is dense-in-itself if D is. But D, < ¢,(f,,+1 — f,,), Which is scattered, thus
D,, cannot be dense-in-itself, hence neither can D. This shows that o.(f) is
scattered and fe Y. Obviously fe F. Furthermore, since the P, are compact, we
can find geF, g # f, by choosing t,e() >, P, and defining g(t,) = 1 and g(¥)
= f(t) for t # t,. This proves Theorem 9.

THEOREM 10. For each countable ordinal A >0, the space X, is strictly
convexifiable.

Proor. The fundamental building block is Day’s norm, which can be defined
for any bounded scalar-valued function f by

L]

D(f) = sup ("E

%
]

1
2 lel)
where the supremum ranges over all one-to-one sequences {s,} in the domain of f.
We choose a basis G,, G,, - of open sets in I, and for each fel®(I) let D,(f)
= D(f|G,), n=1,2,--. For fel®(I) define the function fel>(I) by f(¢)
= 1imsup{|f(s)|:s—>t, s#t}, tel. Let f@= |f|, FErD = §W apd W
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=inf,.,f @ if u is a limit ordinal. Consider the family ®, of functions ¢ on I*(J),
defined for fel*(I) by

#n=ni(5 T 1)

with n ranging over the integers and {;}*,, ranging over all finite sequences of
ordinals such that 0 < «, <a, <.« <o, < i. @, is a countable family, and we
arrange it in a simple sequence @,, @,,-:-. Then define, for each fe X

© 1 %+
N = (T o).
where @o(f) = || f]| .- We will show that N, is the desired norm on X. It is trivial
to verify that N, is a norm equivalent to the sup norm.

We remark here for later use that fe X, if and only if f® = 0. This follows
immediately from the relation o,(f)® = ¢,(f®), which is proved by a straight-
forward induction.

Before proving that N, is strictly convex, we need two lemmas.

LEMMA 11. Suppose I' is a set, f,gel™(), D(f) = D(g), and D(f+ g)
= D(f) + D(g). Then f(t) = g(t) at any point teI such that either

lf®|> sup |f()] or 9] > sup |g(s)].
sel—{1) se=—tt}

ProOOF. By normalizing, we can assume D(f) = D(g) = 1 and D(f + g) = 2.
For each integer i = 1, choose a one-to-one sequence {s/,s;,--} =T so that

hd 1
(2 Flreh+a) >0+ 014
n=1

For each i > 1, define elements x*and y'in I, by x!=(1/2"f(s}) and y! =(1/2"g(s}),
n=12--.Then |x'[|, D) =1, || y'|, £ D(g) =1, and

2-1/i=D(f+g) - 1i<|x*+y . '], + [ '] £ D) +D(g) =2.
Thus | x'+ y'|;—2 as i > o0, and by the uniform convexity of the I, norm,
| x* — y'||]2 = 0. In particular, | x{ — y,’| = 0, hence |f(s}) — g(s{)| = 0 as i — c0.
Now suppose t eI satisfies 6 = sup,e,—_(,}lf(s)| < |f(t)|. If n > 2 and [al < |b|,
then (3)%a% + (3)"b? < (3)2b% + (})"a?, so that if i = 1 and s} # ¢, then
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D(f)* ~ | %' = DU — T Ly

r|l4"I

v

(570 + ar + 3 ]

- 3ot + 0+ £ ]

(F0° =16 (3 - ) 2002 =8 () >0

(where § =s! unless st = ¢, and § = 5] if 5% = £). Thus ” xf |] , is bounded away
from D(f) unless s = t, and since ”x'”z—»D(f) we must have eventually
st = t. Since | f(s}) — g(si)! -0, we therefore have f(f) = g(t). This proves
Lemma 11.

LeEMMA 12. Suppose A >0 is some ordinal number and {a,:0La <A} isa
nonincreasing family of real numbers (that is, if 0 S a < B < A then a, = ap)
such that for 0 < f < 4, a; = inf{a,,: a < B}. Then for each ¢ > 0, there exists
an increasing finite sequence of ordinals ag <oy < -+ <a, <,y Such that

%y = 0’ Tpypy = '1) and
k
120 (aai-f-l - aa;“) <&

Proor. A simple induction on 1.

To prove that N, is strictly convex, assume that N,(f) = N;(g) and N,(f + 9)
= N,(f) + N,(g). We show f = g.
Observe that

NG+ = G 0,0+ 0} S | ok + 5 0@

< | Greit s + [ Gre@} |z = NaH + Ni@).

Since N,(f + g) = N;(f) + N,(g), the £ sign can be stated as an = sign in both
places. The first equality implies that ¢,(f+ g) = ¢,(f) + ¢{9) and the second
that ¢(f) = ¢(g), j = 1,2,++, by the strict convexity of the I, norm.

Pick te I. We must show f(t) = g(f). Notice that f(£) = f(t) > 2 fP(0)=0.
We first show that for each « 2 1, f©)(t) =g‘*(¢). Indeed, either f (""(t) =0=g“ (),
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or else there exists a least ordinal § 2 «, f < 4, such that either fP)(£) > fB+1 (y)
or g®) > g#* V(). Then f(1) = fP(r) and g*Xt) = g®(x). Suppose fP(1)
> f@¢+1(f). Choose a basic open set G, containing ¢t such that f¥(r) >
SUp;e G,.—-(,)f(ﬁ)(s). Since

D(f+9)®) < D(fP + ¢gP) < D(fP) + D(g®),
and by assumption, equality holds and D,(f%®) = D,(g‘?), we can apply Lemma

11 to obtain f®(t) = gP(¢). The same argument applies if g®(t) > g¥+1(s), so
f@() = g"(p) in either case.

We now show that |f(1)| = |g()|. We can assume that either f(z)# 0 or
g(t) # 0; say f(t) # 0. By Lemma 12, select a finite sequence ¢y = 0 < a; < -+ <
o+t = 4 such that

k
Eo [FeD) — f 0] < 3|f @)
Let h be the function

k
h= X [,

i=0

Recall that f® = 0. Then

k
h(t) —h(t) 2 Zk f(“i)(t) -3 f(¢i+1) ®)
i=0 i=0

= f(“")(t) _f(akn)(t) _ E [f("'ﬂ)(t) _f(ain)(t)]
i=0
> [fO] - P - 3| ©0] = 3|f®]>o0.

Thus h(f) > A(t), so we choose an open set G, such that h(f) > SupseG,,-{t}l h(s) l
Let pe®, be the semi-norm defined for ue X; by

@(u) =D (—kil Eou‘“")

By assumption ¢(f + g) = ¢(f) + ¢(g), and

o) = #0) = D, ()= 0. iy Z,0%0).

Applying Lemma 11, we obtain h(f) = Z¥_,¢“(). But fora > 0, f“() = 4*()
therefore we must have f*°X(f) = g“(®) = |f(1)]| = | 9(0)|.

This shows that the assumptions N,(f+ g) = N,(f) + Ny(g) and N,(f)
= Ny(g) imply |f]| = |g].
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Put now w = {(f + g); then N,(w) = N,(f) and N,(w + f) = N;(w) + N,(f)
so |w| = |f|. This implies f(£) = g(t) for all t, and Theorem 10 is proved.

Concluding remarks

The spaces X, and Y, being closed ideals in I°(]), are isometric to spaces of the
form Cy(K), the space of all continuous functions on a compact Hausdorff space
K which vanish at some fixed ko e K. They are also clearly isomorphic to C(K)
spaces. Thus our results show that, even in the class of C(K) spaces, the question
whether or not a given space is strictly convexifiable is quite delicate. We do not
know of a way to characterize intrinsically those compact Hausdorff spaces K for
which C(K) is strictly convexifiable. (And of course we do not know of a charac-
terization of strict convexifiability of general Banach spaces.)

Let us just mention the following observation. Assume that the spaces X, and
Y are constructed over the Cantor set C instead of I; the above theorems will
still hold. For any family {Z,: t € C} of Banach spaces, let

Z=(Z ®Z')xa

teC

denote the Banach space of all functions f on C such that f, € Z, for each t € C, and
if f* is defined by f'(t) = | f,|, t& C, then f" € X,; the norm is | f|| = sup,.cf"()
f'|. If each Z, is isomorphic to a strictly convex space Z,, then the isomor-
phisms can be taken to have uniform upper and lower bounds. Then Z is isomor-
phicto Z’' = (Z,.¢ ® Z})y,, which is defined as above except that the norm on Z’
is | f|| = N,(f"), where N, is the strictly convex norm on X, given by Theorem 10.
It is easy to verify that Z’ is strictly convex; see Day [1, Th. 6]. Thus
Z = (Z,.cD Z)y. is strictly convexifiable if each Z, is. Furthermore, if each Z,
is a subspace of Y, then there is an isometric embedding of Z into Y. Indeed, since
C is homeomorphic to C x C, we regard Y as a space of functions on C x C and
each Z,, te C, as a space of functions on C. Then define T: Z — Y by (Tf) (s, 1)
= f(s) for (s,H)e C x C and fe Z. T is clearly an isometry since sup,l,l (Tf) (s, t)]
= sup,|f, | = ||f]- (It must be verified that Tf is in fact an element of Y. This is
done by showing that ¢,(Tf) is scattered for all ¢ > 0, which comes from the fact
that o (f') and o ,(f)), teC, are scattered. We omit the straightforward details.)

In particular, there exists a strictly convexifiable subspace of Y, isomorphic to a
C(K) space, which contains subspaces isometric to X, for every countable a.
More generally, given Z, < Y, teC, and Z, strictly convexifiable, we have
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constructed strictly convexifiable subspaces W, <Y (for o« < w,) such that
W, < W, c-.- =« W, - and each W, is isometric to (Z,.c® Z,)x_ and therefore
isometrically contains each Z,. In this way, we can repeatedly construct larger,
strictly convexifiable subspaces of ¥, including each time in the space constructed
any given family of P strictly convexifiable subspaces of Y, and thereby strictly
convexify all of the spaces in the given family simultaneously.
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